Metamath Proof Explorer


Theorem uc1pdeg

Description: Unitic polynomials have nonnegative degrees. (Contributed by Stefan O'Rear, 28-Mar-2015)

Ref Expression
Hypotheses uc1pdeg.d D=deg1R
uc1pdeg.c C=Unic1pR
Assertion uc1pdeg RRingFCDF0

Proof

Step Hyp Ref Expression
1 uc1pdeg.d D=deg1R
2 uc1pdeg.c C=Unic1pR
3 simpl RRingFCRRing
4 eqid Poly1R=Poly1R
5 eqid BasePoly1R=BasePoly1R
6 4 5 2 uc1pcl FCFBasePoly1R
7 6 adantl RRingFCFBasePoly1R
8 eqid 0Poly1R=0Poly1R
9 4 8 2 uc1pn0 FCF0Poly1R
10 9 adantl RRingFCF0Poly1R
11 1 4 8 5 deg1nn0cl RRingFBasePoly1RF0Poly1RDF0
12 3 7 10 11 syl3anc RRingFCDF0