Metamath Proof Explorer


Theorem ufli

Description: Property of a set that satisfies the ultrafilter lemma. (Contributed by Mario Carneiro, 26-Aug-2015)

Ref Expression
Assertion ufli XUFLFFilXfUFilXFf

Proof

Step Hyp Ref Expression
1 isufl XUFLXUFLgFilXfUFilXgf
2 1 ibi XUFLgFilXfUFilXgf
3 sseq1 g=FgfFf
4 3 rexbidv g=FfUFilXgffUFilXFf
5 4 rspccva gFilXfUFilXgfFFilXfUFilXFf
6 2 5 sylan XUFLFFilXfUFilXFf