Metamath Proof Explorer


Theorem ulmcl

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmcl FuSGG:S

Proof

Step Hyp Ref Expression
1 ulmscl FuSGSV
2 ulmval SVFuSGnF:nSG:Sx+jnkjzSFkzGz<x
3 1 2 syl FuSGFuSGnF:nSG:Sx+jnkjzSFkzGz<x
4 3 ibi FuSGnF:nSG:Sx+jnkjzSFkzGz<x
5 simp2 F:nSG:Sx+jnkjzSFkzGz<xG:S
6 5 rexlimivw nF:nSG:Sx+jnkjzSFkzGz<xG:S
7 4 6 syl FuSGG:S