Metamath Proof Explorer


Theorem ulmf

Description: Closure of a uniform limit of functions. (Contributed by Mario Carneiro, 26-Feb-2015)

Ref Expression
Assertion ulmf FuSGnF:nS

Proof

Step Hyp Ref Expression
1 ulmscl FuSGSV
2 ulmval SVFuSGnF:nSG:Sx+jnkjzSFkzGz<x
3 1 2 syl FuSGFuSGnF:nSG:Sx+jnkjzSFkzGz<x
4 3 ibi FuSGnF:nSG:Sx+jnkjzSFkzGz<x
5 simp1 F:nSG:Sx+jnkjzSFkzGz<xF:nS
6 5 reximi nF:nSG:Sx+jnkjzSFkzGz<xnF:nS
7 4 6 syl FuSGnF:nS