Metamath Proof Explorer


Theorem ulmi

Description: The uniform limit property. (Contributed by Mario Carneiro, 27-Feb-2015)

Ref Expression
Hypotheses ulm2.z Z=M
ulm2.m φM
ulm2.f φF:ZS
ulm2.b φkZzSFkz=B
ulm2.a φzSGz=A
ulmi.u φFuSG
ulmi.c φC+
Assertion ulmi φjZkjzSBA<C

Proof

Step Hyp Ref Expression
1 ulm2.z Z=M
2 ulm2.m φM
3 ulm2.f φF:ZS
4 ulm2.b φkZzSFkz=B
5 ulm2.a φzSGz=A
6 ulmi.u φFuSG
7 ulmi.c φC+
8 breq2 x=CBA<xBA<C
9 8 ralbidv x=CzSBA<xzSBA<C
10 9 rexralbidv x=CjZkjzSBA<xjZkjzSBA<C
11 ulmcl FuSGG:S
12 6 11 syl φG:S
13 ulmscl FuSGSV
14 6 13 syl φSV
15 1 2 3 4 5 12 14 ulm2 φFuSGx+jZkjzSBA<x
16 6 15 mpbid φx+jZkjzSBA<x
17 10 16 7 rspcdva φjZkjzSBA<C