Metamath Proof Explorer


Theorem umgrn1cycl

Description: In a multigraph graph (with no loops!) there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)

Ref Expression
Assertion umgrn1cycl GUMGraphFCyclesGPF1

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 umgrislfupgr GUMGraphGUPGraphiEdgG:domiEdgGx𝒫VtxG|2x
4 1 2 lfgrn1cycl iEdgG:domiEdgGx𝒫VtxG|2xFCyclesGPF1
5 3 4 simplbiim GUMGraphFCyclesGPF1
6 5 imp GUMGraphFCyclesGPF1