Metamath Proof Explorer


Theorem lfgrn1cycl

Description: In a loop-free graph there are no cycles with length 1 (consisting of one edge). (Contributed by Alexander van der Vekens, 7-Nov-2017) (Revised by AV, 2-Feb-2021)

Ref Expression
Hypotheses lfgrn1cycl.v V = Vtx G
lfgrn1cycl.i I = iEdg G
Assertion lfgrn1cycl I : dom I x 𝒫 V | 2 x F Cycles G P F 1

Proof

Step Hyp Ref Expression
1 lfgrn1cycl.v V = Vtx G
2 lfgrn1cycl.i I = iEdg G
3 cyclprop F Cycles G P F Paths G P P 0 = P F
4 cycliswlk F Cycles G P F Walks G P
5 2 1 lfgrwlknloop I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
6 1nn 1
7 eleq1 F = 1 F 1
8 6 7 mpbiri F = 1 F
9 lbfzo0 0 0 ..^ F F
10 8 9 sylibr F = 1 0 0 ..^ F
11 fveq2 k = 0 P k = P 0
12 fv0p1e1 k = 0 P k + 1 = P 1
13 11 12 neeq12d k = 0 P k P k + 1 P 0 P 1
14 13 rspcv 0 0 ..^ F k 0 ..^ F P k P k + 1 P 0 P 1
15 10 14 syl F = 1 k 0 ..^ F P k P k + 1 P 0 P 1
16 15 impcom k 0 ..^ F P k P k + 1 F = 1 P 0 P 1
17 fveq2 F = 1 P F = P 1
18 17 neeq2d F = 1 P 0 P F P 0 P 1
19 18 adantl k 0 ..^ F P k P k + 1 F = 1 P 0 P F P 0 P 1
20 16 19 mpbird k 0 ..^ F P k P k + 1 F = 1 P 0 P F
21 20 ex k 0 ..^ F P k P k + 1 F = 1 P 0 P F
22 21 necon2d k 0 ..^ F P k P k + 1 P 0 = P F F 1
23 5 22 syl I : dom I x 𝒫 V | 2 x F Walks G P P 0 = P F F 1
24 23 ex I : dom I x 𝒫 V | 2 x F Walks G P P 0 = P F F 1
25 24 com13 P 0 = P F F Walks G P I : dom I x 𝒫 V | 2 x F 1
26 25 adantl F Paths G P P 0 = P F F Walks G P I : dom I x 𝒫 V | 2 x F 1
27 3 4 26 sylc F Cycles G P I : dom I x 𝒫 V | 2 x F 1
28 27 com12 I : dom I x 𝒫 V | 2 x F Cycles G P F 1