Metamath Proof Explorer


Theorem lfgrwlknloop

Description: In a loop-free graph, each walk has no loops! (Contributed by AV, 2-Feb-2021)

Ref Expression
Hypotheses lfgrwlkprop.i I = iEdg G
lfgriswlk.v V = Vtx G
Assertion lfgrwlknloop I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1

Proof

Step Hyp Ref Expression
1 lfgrwlkprop.i I = iEdg G
2 lfgriswlk.v V = Vtx G
3 wlkv F Walks G P G V F V P V
4 1 2 lfgriswlk G V I : dom I x 𝒫 V | 2 x F Walks G P F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k
5 simpl P k P k + 1 P k P k + 1 I F k P k P k + 1
6 5 ralimi k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F P k P k + 1
7 6 3ad2ant3 F Word dom I P : 0 F V k 0 ..^ F P k P k + 1 P k P k + 1 I F k k 0 ..^ F P k P k + 1
8 4 7 syl6bi G V I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
9 8 ex G V I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1
10 9 com23 G V F Walks G P I : dom I x 𝒫 V | 2 x k 0 ..^ F P k P k + 1
11 10 3ad2ant1 G V F V P V F Walks G P I : dom I x 𝒫 V | 2 x k 0 ..^ F P k P k + 1
12 3 11 mpcom F Walks G P I : dom I x 𝒫 V | 2 x k 0 ..^ F P k P k + 1
13 12 impcom I : dom I x 𝒫 V | 2 x F Walks G P k 0 ..^ F P k P k + 1