Metamath Proof Explorer


Theorem lfgriswlk

Description: Conditions for a pair of functions to be a walk in a loop-free graph. (Contributed by AV, 28-Jan-2021)

Ref Expression
Hypotheses lfgrwlkprop.i I=iEdgG
lfgriswlk.v V=VtxG
Assertion lfgriswlk GWI:domIx𝒫V|2xFWalksGPFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFk

Proof

Step Hyp Ref Expression
1 lfgrwlkprop.i I=iEdgG
2 lfgriswlk.v V=VtxG
3 1 wlkf FWalksGPFWorddomI
4 3 adantl GWI:domIx𝒫V|2xFWalksGPFWorddomI
5 2 wlkp FWalksGPP:0FV
6 5 adantl GWI:domIx𝒫V|2xFWalksGPP:0FV
7 1 lfgrwlkprop FWalksGPI:domIx𝒫V|2xk0..^FPkPk+1
8 7 expcom I:domIx𝒫V|2xFWalksGPk0..^FPkPk+1
9 8 adantl GWI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1
10 9 imp GWI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1
11 1 wlkvtxeledg FWalksGPk0..^FPkPk+1IFk
12 11 adantl GWI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1IFk
13 r19.26 k0..^FPkPk+1PkPk+1IFkk0..^FPkPk+1k0..^FPkPk+1IFk
14 10 12 13 sylanbrc GWI:domIx𝒫V|2xFWalksGPk0..^FPkPk+1PkPk+1IFk
15 4 6 14 3jca GWI:domIx𝒫V|2xFWalksGPFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFk
16 simpr1 GWI:domIx𝒫V|2xFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkFWorddomI
17 simpr2 GWI:domIx𝒫V|2xFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkP:0FV
18 df-ne PkPk+1¬Pk=Pk+1
19 ifpfal ¬Pk=Pk+1if-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1IFk
20 18 19 sylbi PkPk+1if-Pk=Pk+1IFk=PkPkPk+1IFkPkPk+1IFk
21 20 biimpar PkPk+1PkPk+1IFkif-Pk=Pk+1IFk=PkPkPk+1IFk
22 21 ralimi k0..^FPkPk+1PkPk+1IFkk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
23 22 3ad2ant3 FWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
24 23 adantl GWI:domIx𝒫V|2xFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
25 2 1 iswlkg GWFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
26 25 ad2antrr GWI:domIx𝒫V|2xFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkFWalksGPFWorddomIP:0FVk0..^Fif-Pk=Pk+1IFk=PkPkPk+1IFk
27 16 17 24 26 mpbir3and GWI:domIx𝒫V|2xFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFkFWalksGP
28 15 27 impbida GWI:domIx𝒫V|2xFWalksGPFWorddomIP:0FVk0..^FPkPk+1PkPk+1IFk