| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lfgrwlkprop.i |
|
| 2 |
|
wlkv |
|
| 3 |
|
eqid |
|
| 4 |
3 1
|
iswlk |
|
| 5 |
2 4
|
syl |
|
| 6 |
|
ifptru |
|
| 7 |
6
|
adantr |
|
| 8 |
|
simplr |
|
| 9 |
|
wrdsymbcl |
|
| 10 |
9
|
ad4ant14 |
|
| 11 |
8 10
|
ffvelcdmd |
|
| 12 |
|
fveq2 |
|
| 13 |
12
|
breq2d |
|
| 14 |
13
|
elrab |
|
| 15 |
|
fveq2 |
|
| 16 |
15
|
breq2d |
|
| 17 |
|
fvex |
|
| 18 |
|
hashsng |
|
| 19 |
17 18
|
ax-mp |
|
| 20 |
19
|
breq2i |
|
| 21 |
|
1lt2 |
|
| 22 |
|
1re |
|
| 23 |
|
2re |
|
| 24 |
22 23
|
ltnlei |
|
| 25 |
|
pm2.21 |
|
| 26 |
24 25
|
sylbi |
|
| 27 |
21 26
|
ax-mp |
|
| 28 |
20 27
|
sylbi |
|
| 29 |
16 28
|
biimtrdi |
|
| 30 |
29
|
com12 |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
a1i |
|
| 33 |
14 32
|
biimtrid |
|
| 34 |
11 33
|
mpd |
|
| 35 |
34
|
adantl |
|
| 36 |
7 35
|
sylbid |
|
| 37 |
36
|
ex |
|
| 38 |
|
neqne |
|
| 39 |
38
|
2a1d |
|
| 40 |
37 39
|
pm2.61i |
|
| 41 |
40
|
ralimdva |
|
| 42 |
41
|
ex |
|
| 43 |
42
|
com23 |
|
| 44 |
43
|
3impia |
|
| 45 |
5 44
|
biimtrdi |
|
| 46 |
45
|
pm2.43i |
|
| 47 |
46
|
imp |
|