| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lfgrwlkprop.i |  |-  I = ( iEdg ` G ) | 
						
							| 2 |  | wlkv |  |-  ( F ( Walks ` G ) P -> ( G e. _V /\ F e. _V /\ P e. _V ) ) | 
						
							| 3 |  | eqid |  |-  ( Vtx ` G ) = ( Vtx ` G ) | 
						
							| 4 | 3 1 | iswlk |  |-  ( ( G e. _V /\ F e. _V /\ P e. _V ) -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) | 
						
							| 5 | 2 4 | syl |  |-  ( F ( Walks ` G ) P -> ( F ( Walks ` G ) P <-> ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) ) ) | 
						
							| 6 |  | ifptru |  |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) | 
						
							| 7 | 6 | adantr |  |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) <-> ( I ` ( F ` k ) ) = { ( P ` k ) } ) ) | 
						
							| 8 |  | simplr |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) | 
						
							| 9 |  | wrdsymbcl |  |-  ( ( F e. Word dom I /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom I ) | 
						
							| 10 | 9 | ad4ant14 |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( F ` k ) e. dom I ) | 
						
							| 11 | 8 10 | ffvelcdmd |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } ) | 
						
							| 12 |  | fveq2 |  |-  ( x = ( I ` ( F ` k ) ) -> ( # ` x ) = ( # ` ( I ` ( F ` k ) ) ) ) | 
						
							| 13 | 12 | breq2d |  |-  ( x = ( I ` ( F ` k ) ) -> ( 2 <_ ( # ` x ) <-> 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) ) | 
						
							| 14 | 13 | elrab |  |-  ( ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } <-> ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) ) | 
						
							| 15 |  | fveq2 |  |-  ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( # ` ( I ` ( F ` k ) ) ) = ( # ` { ( P ` k ) } ) ) | 
						
							| 16 | 15 | breq2d |  |-  ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) <-> 2 <_ ( # ` { ( P ` k ) } ) ) ) | 
						
							| 17 |  | fvex |  |-  ( P ` k ) e. _V | 
						
							| 18 |  | hashsng |  |-  ( ( P ` k ) e. _V -> ( # ` { ( P ` k ) } ) = 1 ) | 
						
							| 19 | 17 18 | ax-mp |  |-  ( # ` { ( P ` k ) } ) = 1 | 
						
							| 20 | 19 | breq2i |  |-  ( 2 <_ ( # ` { ( P ` k ) } ) <-> 2 <_ 1 ) | 
						
							| 21 |  | 1lt2 |  |-  1 < 2 | 
						
							| 22 |  | 1re |  |-  1 e. RR | 
						
							| 23 |  | 2re |  |-  2 e. RR | 
						
							| 24 | 22 23 | ltnlei |  |-  ( 1 < 2 <-> -. 2 <_ 1 ) | 
						
							| 25 |  | pm2.21 |  |-  ( -. 2 <_ 1 -> ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 26 | 24 25 | sylbi |  |-  ( 1 < 2 -> ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 27 | 21 26 | ax-mp |  |-  ( 2 <_ 1 -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 28 | 20 27 | sylbi |  |-  ( 2 <_ ( # ` { ( P ` k ) } ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 29 | 16 28 | biimtrdi |  |-  ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 30 | 29 | com12 |  |-  ( 2 <_ ( # ` ( I ` ( F ` k ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 32 | 31 | a1i |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( ( I ` ( F ` k ) ) e. ~P V /\ 2 <_ ( # ` ( I ` ( F ` k ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 33 | 14 32 | biimtrid |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) e. { x e. ~P V | 2 <_ ( # ` x ) } -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 34 | 11 33 | mpd |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 35 | 34 | adantl |  |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( ( I ` ( F ` k ) ) = { ( P ` k ) } -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 36 | 7 35 | sylbid |  |-  ( ( ( P ` k ) = ( P ` ( k + 1 ) ) /\ ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 37 | 36 | ex |  |-  ( ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 38 |  | neqne |  |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) | 
						
							| 39 | 38 | 2a1d |  |-  ( -. ( P ` k ) = ( P ` ( k + 1 ) ) -> ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 40 | 37 39 | pm2.61i |  |-  ( ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) /\ k e. ( 0 ..^ ( # ` F ) ) ) -> ( if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 41 | 40 | ralimdva |  |-  ( ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 42 | 41 | ex |  |-  ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 43 | 42 | com23 |  |-  ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) ) -> ( A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 44 | 43 | 3impia |  |-  ( ( F e. Word dom I /\ P : ( 0 ... ( # ` F ) ) --> ( Vtx ` G ) /\ A. k e. ( 0 ..^ ( # ` F ) ) if- ( ( P ` k ) = ( P ` ( k + 1 ) ) , ( I ` ( F ` k ) ) = { ( P ` k ) } , { ( P ` k ) , ( P ` ( k + 1 ) ) } C_ ( I ` ( F ` k ) ) ) ) -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 45 | 5 44 | biimtrdi |  |-  ( F ( Walks ` G ) P -> ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) ) | 
						
							| 46 | 45 | pm2.43i |  |-  ( F ( Walks ` G ) P -> ( I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) ) | 
						
							| 47 | 46 | imp |  |-  ( ( F ( Walks ` G ) P /\ I : dom I --> { x e. ~P V | 2 <_ ( # ` x ) } ) -> A. k e. ( 0 ..^ ( # ` F ) ) ( P ` k ) =/= ( P ` ( k + 1 ) ) ) |