Metamath Proof Explorer


Theorem undif3

Description: An equality involving class union and class difference. The first equality of Exercise 13 of TakeutiZaring p. 22. (Contributed by Alan Sare, 17-Apr-2012) (Proof shortened by JJ, 13-Jul-2021)

Ref Expression
Assertion undif3 ABC=ABCA

Proof

Step Hyp Ref Expression
1 elun xABxAxB
2 pm4.53 ¬xC¬xA¬xCxA
3 eldif xCAxC¬xA
4 2 3 xchnxbir ¬xCA¬xCxA
5 1 4 anbi12i xAB¬xCAxAxB¬xCxA
6 eldif xABCAxAB¬xCA
7 elun xABCxAxBC
8 eldif xBCxB¬xC
9 8 orbi2i xAxBCxAxB¬xC
10 ordi xAxB¬xCxAxBxA¬xC
11 orcom xA¬xC¬xCxA
12 11 anbi2i xAxBxA¬xCxAxB¬xCxA
13 10 12 bitri xAxB¬xCxAxB¬xCxA
14 7 9 13 3bitri xABCxAxB¬xCxA
15 5 6 14 3bitr4ri xABCxABCA
16 15 eqriv ABC=ABCA