Metamath Proof Explorer


Theorem unfid

Description: The union of two finite sets is finite. (Contributed by Glauco Siliprandi, 5-Feb-2022)

Ref Expression
Hypotheses unfid.1 φAFin
unfid.2 φBFin
Assertion unfid φABFin

Proof

Step Hyp Ref Expression
1 unfid.1 φAFin
2 unfid.2 φBFin
3 unfi AFinBFinABFin
4 1 2 3 syl2anc φABFin