Metamath Proof Explorer


Theorem uni0b

Description: The union of a set is empty iff the set is included in the singleton of the empty set. (Contributed by NM, 12-Sep-2004)

Ref Expression
Assertion uni0b A=A

Proof

Step Hyp Ref Expression
1 velsn xx=
2 1 ralbii xAxxAx=
3 dfss3 AxAx
4 neq0 ¬A=yyA
5 rexcom4 xAyyxyxAyx
6 neq0 ¬x=yyx
7 6 rexbii xA¬x=xAyyx
8 eluni2 yAxAyx
9 8 exbii yyAyxAyx
10 5 7 9 3bitr4ri yyAxA¬x=
11 rexnal xA¬x=¬xAx=
12 4 10 11 3bitri ¬A=¬xAx=
13 12 con4bii A=xAx=
14 2 3 13 3bitr4ri A=A