Metamath Proof Explorer


Theorem unidmrn

Description: The double union of the converse of a class is its field. (Contributed by NM, 4-Jun-2008)

Ref Expression
Assertion unidmrn A-1=domAranA

Proof

Step Hyp Ref Expression
1 relcnv RelA-1
2 relfld RelA-1A-1=domA-1ranA-1
3 1 2 ax-mp A-1=domA-1ranA-1
4 3 equncomi A-1=ranA-1domA-1
5 dfdm4 domA=ranA-1
6 df-rn ranA=domA-1
7 5 6 uneq12i domAranA=ranA-1domA-1
8 4 7 eqtr4i A-1=domAranA