Metamath Proof Explorer


Theorem uniixp

Description: The union of an infinite Cartesian product is included in a Cartesian product. (Contributed by NM, 28-Sep-2006) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion uniixp xABA×xAB

Proof

Step Hyp Ref Expression
1 ixpf fxABf:AxAB
2 fssxp f:AxABfA×xAB
3 1 2 syl fxABfA×xAB
4 velpw f𝒫A×xABfA×xAB
5 3 4 sylibr fxABf𝒫A×xAB
6 5 ssriv xAB𝒫A×xAB
7 sspwuni xAB𝒫A×xABxABA×xAB
8 6 7 mpbi xABA×xAB