Metamath Proof Explorer


Theorem uniprOLD

Description: Obsolete version of unipr as of 1-Sep-2024. (Contributed by NM, 23-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses unipr.1 AV
unipr.2 BV
Assertion uniprOLD AB=AB

Proof

Step Hyp Ref Expression
1 unipr.1 AV
2 unipr.2 BV
3 19.43 yxyy=Axyy=Byxyy=Ayxyy=B
4 vex yV
5 4 elpr yABy=Ay=B
6 5 anbi2i xyyABxyy=Ay=B
7 andi xyy=Ay=Bxyy=Axyy=B
8 6 7 bitri xyyABxyy=Axyy=B
9 8 exbii yxyyAByxyy=Axyy=B
10 1 clel3 xAyy=Axy
11 exancom yy=Axyyxyy=A
12 10 11 bitri xAyxyy=A
13 2 clel3 xByy=Bxy
14 exancom yy=Bxyyxyy=B
15 13 14 bitri xByxyy=B
16 12 15 orbi12i xAxByxyy=Ayxyy=B
17 3 9 16 3bitr4ri xAxByxyyAB
18 17 abbii x|xAxB=x|yxyyAB
19 df-un AB=x|xAxB
20 df-uni AB=x|yxyyAB
21 18 19 20 3eqtr4ri AB=AB