Metamath Proof Explorer


Theorem uniqsALTV

Description: The union of a quotient set, like uniqs but with a weaker antecedent: only the restricion of R by A needs to be a set, not R itself, see e.g. cnvepima . (Contributed by Peter Mazsa, 20-Jun-2019)

Ref Expression
Assertion uniqsALTV R A V A / R = R A

Proof

Step Hyp Ref Expression
1 ecex2 R A V x A x R V
2 1 ralrimiv R A V x A x R V
3 dfiun2g x A x R V x A x R = y | x A y = x R
4 2 3 syl R A V x A x R = y | x A y = x R
5 4 eqcomd R A V y | x A y = x R = x A x R
6 df-qs A / R = y | x A y = x R
7 6 unieqi A / R = y | x A y = x R
8 df-ec x R = R x
9 8 a1i x A x R = R x
10 9 iuneq2i x A x R = x A R x
11 imaiun R x A x = x A R x
12 iunid x A x = A
13 12 imaeq2i R x A x = R A
14 10 11 13 3eqtr2ri R A = x A x R
15 5 7 14 3eqtr4g R A V A / R = R A