Metamath Proof Explorer


Theorem unisalgen2

Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unisalgen2.x φAV
unisalgen2.s S=SalGenA
Assertion unisalgen2 φS=A

Proof

Step Hyp Ref Expression
1 unisalgen2.x φAV
2 unisalgen2.s S=SalGenA
3 2 eqcomi SalGenA=S
4 3 a1i φSalGenA=S
5 1 dfsalgen2 φSalGenA=SSSAlgS=AASxSAlgx=AAxSx
6 4 5 mpbid φSSAlgS=AASxSAlgx=AAxSx
7 6 simpld φSSAlgS=AAS
8 7 simp2d φS=A