Metamath Proof Explorer


Theorem unisalgen2

Description: The union of a set belongs is equal to the union of the sigma-algebra generated by the set. (Contributed by Glauco Siliprandi, 26-Jun-2021)

Ref Expression
Hypotheses unisalgen2.x φ A V
unisalgen2.s S = SalGen A
Assertion unisalgen2 φ S = A

Proof

Step Hyp Ref Expression
1 unisalgen2.x φ A V
2 unisalgen2.s S = SalGen A
3 2 eqcomi SalGen A = S
4 3 a1i φ SalGen A = S
5 1 dfsalgen2 φ SalGen A = S S SAlg S = A A S x SAlg x = A A x S x
6 4 5 mpbid φ S SAlg S = A A S x SAlg x = A A x S x
7 6 simpld φ S SAlg S = A A S
8 7 simp2d φ S = A