Metamath Proof Explorer


Theorem uniss2

Description: A subclass condition on the members of two classes that implies a subclass relation on their unions. Proposition 8.6 of TakeutiZaring p. 59. See iunss2 for a generalization to indexed unions. (Contributed by NM, 22-Mar-2004)

Ref Expression
Assertion uniss2 xAyBxyAB

Proof

Step Hyp Ref Expression
1 ssuni xyyBxB
2 1 expcom yBxyxB
3 2 rexlimiv yBxyxB
4 3 ralimi xAyBxyxAxB
5 unissb ABxAxB
6 4 5 sylibr xAyBxyAB