Metamath Proof Explorer


Theorem uniun

Description: The class union of the union of two classes. Theorem 8.3 of Quine p. 53. (Contributed by NM, 20-Aug-1993)

Ref Expression
Assertion uniun AB=AB

Proof

Step Hyp Ref Expression
1 19.43 yxyyAxyyByxyyAyxyyB
2 elun yAByAyB
3 2 anbi2i xyyABxyyAyB
4 andi xyyAyBxyyAxyyB
5 3 4 bitri xyyABxyyAxyyB
6 5 exbii yxyyAByxyyAxyyB
7 eluni xAyxyyA
8 eluni xByxyyB
9 7 8 orbi12i xAxByxyyAyxyyB
10 1 6 9 3bitr4i yxyyABxAxB
11 eluni xAByxyyAB
12 elun xABxAxB
13 10 11 12 3bitr4i xABxAB
14 13 eqriv AB=AB