Metamath Proof Explorer


Theorem uniwun

Description: Every set is contained in a weak universe. This is the analogue of grothtsk for weak universes, but it is provable in ZF without the Tarski-Grothendieck axiom, contrary to grothtsk . (Contributed by Mario Carneiro, 2-Jan-2017)

Ref Expression
Assertion uniwun WUni=V

Proof

Step Hyp Ref Expression
1 eqv WUni=VxxWUni
2 vsnex xV
3 wunex xVuWUnixu
4 2 3 ax-mp uWUnixu
5 eluni2 xWUniuWUnixu
6 vex xV
7 6 snss xuxu
8 7 rexbii uWUnixuuWUnixu
9 5 8 bitri xWUniuWUnixu
10 4 9 mpbir xWUni
11 1 10 mpgbir WUni=V