Metamath Proof Explorer


Theorem unopab

Description: Union of two ordered pair class abstractions. (Contributed by NM, 30-Sep-2002)

Ref Expression
Assertion unopab xy|φxy|ψ=xy|φψ

Proof

Step Hyp Ref Expression
1 eqeq1 z=wz=xyw=xy
2 1 anbi1d z=wz=xyφw=xyφ
3 2 2exbidv z=wxyz=xyφxyw=xyφ
4 1 anbi1d z=wz=xyψw=xyψ
5 4 2exbidv z=wxyz=xyψxyw=xyψ
6 3 5 unabw z|xyz=xyφz|xyz=xyψ=w|xyw=xyφxyw=xyψ
7 19.43 xyw=xyφyw=xyψxyw=xyφxyw=xyψ
8 andi w=xyφψw=xyφw=xyψ
9 8 exbii yw=xyφψyw=xyφw=xyψ
10 19.43 yw=xyφw=xyψyw=xyφyw=xyψ
11 9 10 bitr2i yw=xyφyw=xyψyw=xyφψ
12 11 exbii xyw=xyφyw=xyψxyw=xyφψ
13 7 12 bitr3i xyw=xyφxyw=xyψxyw=xyφψ
14 13 abbii w|xyw=xyφxyw=xyψ=w|xyw=xyφψ
15 6 14 eqtri z|xyz=xyφz|xyz=xyψ=w|xyw=xyφψ
16 df-opab xy|φ=z|xyz=xyφ
17 df-opab xy|ψ=z|xyz=xyψ
18 16 17 uneq12i xy|φxy|ψ=z|xyz=xyφz|xyz=xyψ
19 df-opab xy|φψ=w|xyw=xyφψ
20 15 18 19 3eqtr4i xy|φxy|ψ=xy|φψ