Metamath Proof Explorer


Theorem unss1

Description: Subclass law for union of classes. (Contributed by NM, 14-Oct-1999) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion unss1 ABACBC

Proof

Step Hyp Ref Expression
1 ssel ABxAxB
2 1 orim1d ABxAxCxBxC
3 elun xACxAxC
4 elun xBCxBxC
5 2 3 4 3imtr4g ABxACxBC
6 5 ssrdv ABACBC