Metamath Proof Explorer


Theorem uobeq3

Description: An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq2.b B = Base D
uobeq2.x φ X B
uobeq2.f φ F C Func D
uobeq2.g φ K func F = G
uobeq2.y φ 1 st K X = Y
uobeq2.q Q = CatCat U
uobeq3.i I = Iso Q
uobeq3.1 φ K D I E
Assertion uobeq3 Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeq2.b B = Base D
2 uobeq2.x φ X B
3 uobeq2.f φ F C Func D
4 uobeq2.g φ K func F = G
5 uobeq2.y φ 1 st K X = Y
6 uobeq2.q Q = CatCat U
7 uobeq3.i I = Iso Q
8 uobeq3.1 φ K D I E
9 eqid Base E = Base E
10 6 1 9 7 8 catcisoi φ K D Full E D Faith E 1 st K : B 1-1 onto Base E
11 10 simpld φ K D Full E D Faith E
12 1 2 3 4 5 11 uobffth Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-