Metamath Proof Explorer


Theorem uobeq3

Description: An isomorphism between categories generates equal sets of universal objects. (Contributed by Zhi Wang, 17-Nov-2025)

Ref Expression
Hypotheses uobeq2.b B = Base D
uobeq2.x φ X B
uobeq2.f φ F C Func D
uobeq2.g φ K func F = G
uobeq2.y φ 1 st K X = Y
uobeq2.q Q = CatCat U
uobeq3.i I = Iso Q
uobeq3.1 φ K D I E
Assertion uobeq3 Could not format assertion : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 uobeq2.b B = Base D
2 uobeq2.x φ X B
3 uobeq2.f φ F C Func D
4 uobeq2.g φ K func F = G
5 uobeq2.y φ 1 st K X = Y
6 uobeq2.q Q = CatCat U
7 uobeq3.i I = Iso Q
8 uobeq3.1 φ K D I E
9 eqid Sect Q = Sect Q
10 eqid Base E = Base E
11 6 1 10 7 8 catcisoi φ K D Full E D Faith E 1 st K : B 1-1 onto Base E
12 11 simpld φ K D Full E D Faith E
13 12 elin1d φ K D Full E
14 eqid Inv Q = Inv Q
15 14 7 isoval2 D I E = dom D Inv Q E
16 8 15 eleqtrdi φ K dom D Inv Q E
17 eldmg K dom D Inv Q E K dom D Inv Q E l K D Inv Q E l
18 17 ibi K dom D Inv Q E l K D Inv Q E l
19 14 9 isinv2 K D Inv Q E l K D Sect Q E l l E Sect Q D K
20 19 simplbi K D Inv Q E l K D Sect Q E l
21 20 eximi l K D Inv Q E l l K D Sect Q E l
22 16 18 21 3syl φ l K D Sect Q E l
23 eldmg K D I E K dom D Sect Q E l K D Sect Q E l
24 8 23 syl φ K dom D Sect Q E l K D Sect Q E l
25 22 24 mpbird φ K dom D Sect Q E
26 1 2 3 4 5 6 9 13 25 uobeq2 Could not format ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) : No typesetting found for |- ( ph -> dom ( F ( C UP D ) X ) = dom ( G ( C UP E ) Y ) ) with typecode |-