Metamath Proof Explorer


Theorem upgrspan

Description: A spanning subgraph S of a pseudograph G is a pseudograph. (Contributed by AV, 11-Oct-2020) (Proof shortened by AV, 18-Nov-2020)

Ref Expression
Hypotheses uhgrspan.v V=VtxG
uhgrspan.e E=iEdgG
uhgrspan.s φSW
uhgrspan.q φVtxS=V
uhgrspan.r φiEdgS=EA
upgrspan.g φGUPGraph
Assertion upgrspan φSUPGraph

Proof

Step Hyp Ref Expression
1 uhgrspan.v V=VtxG
2 uhgrspan.e E=iEdgG
3 uhgrspan.s φSW
4 uhgrspan.q φVtxS=V
5 uhgrspan.r φiEdgS=EA
6 upgrspan.g φGUPGraph
7 upgruhgr GUPGraphGUHGraph
8 6 7 syl φGUHGraph
9 1 2 3 4 5 8 uhgrspansubgr φSSubGraphG
10 subupgr GUPGraphSSubGraphGSUPGraph
11 6 9 10 syl2anc φSUPGraph