Metamath Proof Explorer


Theorem usgr1eop

Description: A simple graph with (at least) two different vertices and one edge. If the two vertices were not different, the edge would be a loop. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Assertion usgr1eop VWAXBVCVBCVABCUSGraph

Proof

Step Hyp Ref Expression
1 eqid VtxVABC=VtxVABC
2 simpllr VWAXBVCVBCAX
3 simplrl VWAXBVCVBCBV
4 simpl VWAXVW
5 4 adantr VWAXBVCVVW
6 snex ABCV
7 6 a1i BCABCV
8 opvtxfv VWABCVVtxVABC=V
9 5 7 8 syl2an VWAXBVCVBCVtxVABC=V
10 3 9 eleqtrrd VWAXBVCVBCBVtxVABC
11 simprr VWAXBVCVCV
12 6 a1i BVCVABCV
13 4 12 8 syl2an VWAXBVCVVtxVABC=V
14 11 13 eleqtrrd VWAXBVCVCVtxVABC
15 14 adantr VWAXBVCVBCCVtxVABC
16 opiedgfv VWABCViEdgVABC=ABC
17 5 7 16 syl2an VWAXBVCVBCiEdgVABC=ABC
18 simpr VWAXBVCVBCBC
19 1 2 10 15 17 18 usgr1e VWAXBVCVBCVABCUSGraph
20 19 ex VWAXBVCVBCVABCUSGraph