Metamath Proof Explorer


Theorem usgr1v

Description: A class with one (or no) vertex is a simple graph if and only if it has no edges. (Contributed by Alexander van der Vekens, 13-Oct-2017) (Revised by AV, 18-Oct-2020)

Ref Expression
Assertion usgr1v GWVtxG=AGUSGraphiEdgG=

Proof

Step Hyp Ref Expression
1 usgr1vr AVVtxG=AGUSGraphiEdgG=
2 1 adantrl AVGWVtxG=AGUSGraphiEdgG=
3 simplrl AVGWVtxG=AiEdgG=GW
4 simpr AVGWVtxG=AiEdgG=iEdgG=
5 3 4 usgr0e AVGWVtxG=AiEdgG=GUSGraph
6 5 ex AVGWVtxG=AiEdgG=GUSGraph
7 2 6 impbid AVGWVtxG=AGUSGraphiEdgG=
8 7 ex AVGWVtxG=AGUSGraphiEdgG=
9 snprc ¬AVA=
10 simpl GWVtxG=AGW
11 simprr A=GWVtxG=AVtxG=A
12 simpl A=GWVtxG=AA=
13 11 12 eqtrd A=GWVtxG=AVtxG=
14 usgr0vb GWVtxG=GUSGraphiEdgG=
15 10 13 14 syl2an2 A=GWVtxG=AGUSGraphiEdgG=
16 15 ex A=GWVtxG=AGUSGraphiEdgG=
17 9 16 sylbi ¬AVGWVtxG=AGUSGraphiEdgG=
18 8 17 pm2.61i GWVtxG=AGUSGraphiEdgG=