Metamath Proof Explorer


Theorem usgrausgri

Description: A simple graph represented by an alternatively defined simple graph. (Contributed by AV, 15-Oct-2020)

Ref Expression
Hypothesis ausgr.1 G=ve|ex𝒫v|x=2
Assertion usgrausgri HUSGraphVtxHGEdgH

Proof

Step Hyp Ref Expression
1 ausgr.1 G=ve|ex𝒫v|x=2
2 usgredgss HUSGraphEdgHx𝒫VtxH|x=2
3 fvex VtxHV
4 fvex EdgHV
5 1 isausgr VtxHVEdgHVVtxHGEdgHEdgHx𝒫VtxH|x=2
6 3 4 5 mp2an VtxHGEdgHEdgHx𝒫VtxH|x=2
7 2 6 sylibr HUSGraphVtxHGEdgH