Metamath Proof Explorer


Theorem usgrexmpledg

Description: The edges { 0 , 1 } , { 1 , 2 } , { 2 , 0 } , { 0 , 3 } of the graph G = <. V , E >. . (Contributed by AV, 12-Jan-2020) (Revised by AV, 21-Oct-2020)

Ref Expression
Hypotheses usgrexmpl.v V=04
usgrexmpl.e E=⟨“01122003”⟩
usgrexmpl.g G=VE
Assertion usgrexmpledg EdgG=01122003

Proof

Step Hyp Ref Expression
1 usgrexmpl.v V=04
2 usgrexmpl.e E=⟨“01122003”⟩
3 usgrexmpl.g G=VE
4 edgval EdgG=raniEdgG
5 1 2 3 usgrexmpllem VtxG=ViEdgG=E
6 5 simpri iEdgG=E
7 6 rneqi raniEdgG=ranE
8 prex 01V
9 prex 12V
10 8 9 pm3.2i 01V12V
11 prex 20V
12 prex 03V
13 11 12 pm3.2i 20V03V
14 10 13 pm3.2i 01V12V20V03V
15 usgrexmpldifpr 011201200103122012032003
16 14 15 pm3.2i 01V12V20V03V011201200103122012032003
17 16 2 pm3.2i 01V12V20V03V011201200103122012032003E=⟨“01122003”⟩
18 s4f1o 01V12V20V03V011201200103122012032003E=⟨“01122003”⟩E:domE1-1 onto01122003
19 18 imp31 01V12V20V03V011201200103122012032003E=⟨“01122003”⟩E:domE1-1 onto01122003
20 dff1o5 E:domE1-1 onto01122003E:domE1-101122003ranE=01122003
21 20 simprbi E:domE1-1 onto01122003ranE=01122003
22 17 19 21 mp2b ranE=01122003
23 4 7 22 3eqtri EdgG=01122003