Metamath Proof Explorer
Description: G is a simple graph of five vertices 0 , 1 , 2 , 3 , 4 , with
edges { 0 , 1 } , { 1 , 2 } , { 2 , 0 } , { 0 , 3 } . (Contributed by Alexander van der Vekens, 15-Aug-2017) (Revised by AV, 21-Oct-2020) (Proof shortened by AV, 7-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
usgrexmpl.v |
|
|
|
usgrexmpl.e |
|
|
|
usgrexmpl.g |
|
|
Assertion |
usgrexmpl |
|
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
usgrexmpl.v |
|
| 2 |
|
usgrexmpl.e |
|
| 3 |
|
usgrexmpl.g |
|
| 4 |
1 2
|
usgrexmplef |
|
| 5 |
3
|
eleq1i |
|
| 6 |
1
|
ovexi |
|
| 7 |
|
s4cli |
|
| 8 |
2 7
|
eqeltri |
|
| 9 |
|
isusgrop |
|
| 10 |
6 8 9
|
mp2an |
|
| 11 |
5 10
|
bitri |
|
| 12 |
4 11
|
mpbir |
|