Metamath Proof Explorer


Theorem usgrumgr

Description: A simple graph is an undirected multigraph. (Contributed by AV, 25-Nov-2020)

Ref Expression
Assertion usgrumgr GUSGraphGUMGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 usgrfs GUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
4 f1f iEdgG:domiEdgG1-1x𝒫VtxG|x=2iEdgG:domiEdgGx𝒫VtxG|x=2
5 3 4 syl GUSGraphiEdgG:domiEdgGx𝒫VtxG|x=2
6 1 2 isumgrs GUSGraphGUMGraphiEdgG:domiEdgGx𝒫VtxG|x=2
7 5 6 mpbird GUSGraphGUMGraph