Metamath Proof Explorer


Theorem usgrumgruspgr

Description: A graph is a simple graph iff it is a multigraph and a simple pseudograph. (Contributed by AV, 30-Nov-2020)

Ref Expression
Assertion usgrumgruspgr GUSGraphGUMGraphGUSHGraph

Proof

Step Hyp Ref Expression
1 usgrumgr GUSGraphGUMGraph
2 usgruspgr GUSGraphGUSHGraph
3 1 2 jca GUSGraphGUMGraphGUSHGraph
4 eqid VtxG=VtxG
5 eqid iEdgG=iEdgG
6 4 5 uspgrf GUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
7 umgredgss GUMGraphEdgGx𝒫VtxG|x=2
8 edgval EdgG=raniEdgG
9 prprrab x𝒫VtxG|x=2=x𝒫VtxG|x=2
10 9 eqcomi x𝒫VtxG|x=2=x𝒫VtxG|x=2
11 7 8 10 3sstr3g GUMGraphraniEdgGx𝒫VtxG|x=2
12 f1ssr iEdgG:domiEdgG1-1x𝒫VtxG|x2raniEdgGx𝒫VtxG|x=2iEdgG:domiEdgG1-1x𝒫VtxG|x=2
13 6 11 12 syl2anr GUMGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
14 4 5 isusgr GUMGraphGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
15 14 adantr GUMGraphGUSHGraphGUSGraphiEdgG:domiEdgG1-1x𝒫VtxG|x=2
16 13 15 mpbird GUMGraphGUSHGraphGUSGraph
17 3 16 impbii GUSGraphGUMGraphGUSHGraph