Metamath Proof Explorer


Theorem uspgredgleord

Description: In a simple pseudograph the number of edges which contain a given vertex is not greater than the number of vertices. (Contributed by Alexander van der Vekens, 4-Jan-2018) (Revised by AV, 6-Dec-2020)

Ref Expression
Hypotheses usgredgleord.v V=VtxG
usgredgleord.e E=EdgG
Assertion uspgredgleord GUSHGraphNVeE|NeV

Proof

Step Hyp Ref Expression
1 usgredgleord.v V=VtxG
2 usgredgleord.e E=EdgG
3 1 fvexi VV
4 eqid eE|Ne=eE|Ne
5 eqid xeE|NeιyV|x=Ny=xeE|NeιyV|x=Ny
6 1 2 4 5 uspgredg2v GUSHGraphNVxeE|NeιyV|x=Ny:eE|Ne1-1V
7 f1domg VVxeE|NeιyV|x=Ny:eE|Ne1-1VeE|NeV
8 3 6 7 mpsyl GUSHGraphNVeE|NeV
9 hashdomi eE|NeVeE|NeV
10 8 9 syl GUSHGraphNVeE|NeV