Metamath Proof Explorer


Theorem uspgrupgr

Description: A simple pseudograph is an undirected pseudograph. (Contributed by Alexander van der Vekens, 10-Aug-2017) (Revised by AV, 15-Oct-2020)

Ref Expression
Assertion uspgrupgr GUSHGraphGUPGraph

Proof

Step Hyp Ref Expression
1 eqid VtxG=VtxG
2 eqid iEdgG=iEdgG
3 1 2 isuspgr GUSHGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
4 f1f iEdgG:domiEdgG1-1x𝒫VtxG|x2iEdgG:domiEdgGx𝒫VtxG|x2
5 3 4 syl6bi GUSHGraphGUSHGraphiEdgG:domiEdgGx𝒫VtxG|x2
6 1 2 isupgr GUSHGraphGUPGraphiEdgG:domiEdgGx𝒫VtxG|x2
7 5 6 sylibrd GUSHGraphGUSHGraphGUPGraph
8 7 pm2.43i GUSHGraphGUPGraph