Metamath Proof Explorer


Theorem uspgrupgrushgr

Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020)

Ref Expression
Assertion uspgrupgrushgr GUSHGraphGUPGraphGUSHGraph

Proof

Step Hyp Ref Expression
1 uspgrupgr GUSHGraphGUPGraph
2 uspgrushgr GUSHGraphGUSHGraph
3 1 2 jca GUSHGraphGUPGraphGUSHGraph
4 eqid VtxG=VtxG
5 eqid iEdgG=iEdgG
6 4 5 ushgrf GUSHGraphiEdgG:domiEdgG1-1𝒫VtxG
7 edgval EdgG=raniEdgG
8 upgredgss GUPGraphEdgGx𝒫VtxG|x2
9 7 8 eqsstrrid GUPGraphraniEdgGx𝒫VtxG|x2
10 f1ssr iEdgG:domiEdgG1-1𝒫VtxGraniEdgGx𝒫VtxG|x2iEdgG:domiEdgG1-1x𝒫VtxG|x2
11 6 9 10 syl2anr GUPGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
12 4 5 isuspgr GUPGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
13 12 adantr GUPGraphGUSHGraphGUSHGraphiEdgG:domiEdgG1-1x𝒫VtxG|x2
14 11 13 mpbird GUPGraphGUSHGraphGUSHGraph
15 3 14 impbii GUSHGraphGUPGraphGUSHGraph