Description: A graph is a simple pseudograph iff it is a pseudograph and a simple hypergraph. (Contributed by AV, 30-Nov-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | uspgrupgrushgr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | uspgrupgr | |
|
2 | uspgrushgr | |
|
3 | 1 2 | jca | |
4 | eqid | |
|
5 | eqid | |
|
6 | 4 5 | ushgrf | |
7 | edgval | |
|
8 | upgredgss | |
|
9 | 7 8 | eqsstrrid | |
10 | f1ssr | |
|
11 | 6 9 10 | syl2anr | |
12 | 4 5 | isuspgr | |
13 | 12 | adantr | |
14 | 11 13 | mpbird | |
15 | 3 14 | impbii | |