Metamath Proof Explorer


Theorem ustneism

Description: For a point A in X , ( V " { A } ) is small enough in ( V o.`' V ) ` . This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017)

Ref Expression
Assertion ustneism VX×XAXVA×VAVV-1

Proof

Step Hyp Ref Expression
1 snnzg AXA
2 1 adantl VX×XAXA
3 xpco AA×VAVA×A=VA×VA
4 2 3 syl VX×XAXA×VAVA×A=VA×VA
5 cnvxp A×VA-1=VA×A
6 ressn VA=A×VA
7 6 cnveqi VA-1=A×VA-1
8 resss VAV
9 cnvss VAVVA-1V-1
10 8 9 ax-mp VA-1V-1
11 7 10 eqsstrri A×VA-1V-1
12 5 11 eqsstrri VA×AV-1
13 coss2 VA×AV-1A×VAVA×AA×VAV-1
14 12 13 mp1i VX×XAXA×VAVA×AA×VAV-1
15 6 8 eqsstrri A×VAV
16 coss1 A×VAVA×VAV-1VV-1
17 15 16 mp1i VX×XAXA×VAV-1VV-1
18 14 17 sstrd VX×XAXA×VAVA×AVV-1
19 4 18 eqsstrrd VX×XAXVA×VAVV-1