Description: For a point A in X , ( V " { A } ) is small enough in ( V o.`' V ) ` . This proposition actually does not require any axiom of the definition of uniform structures. (Contributed by Thierry Arnoux, 18-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | ustneism | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snnzg | |
|
2 | 1 | adantl | |
3 | xpco | |
|
4 | 2 3 | syl | |
5 | cnvxp | |
|
6 | ressn | |
|
7 | 6 | cnveqi | |
8 | resss | |
|
9 | cnvss | |
|
10 | 8 9 | ax-mp | |
11 | 7 10 | eqsstrri | |
12 | 5 11 | eqsstrri | |
13 | coss2 | |
|
14 | 12 13 | mp1i | |
15 | 6 8 | eqsstrri | |
16 | coss1 | |
|
17 | 15 16 | mp1i | |
18 | 14 17 | sstrd | |
19 | 4 18 | eqsstrrd | |