Metamath Proof Explorer


Theorem ustref

Description: Any element of the base set is "near" itself, i.e. entourages are reflexive. (Contributed by Thierry Arnoux, 16-Nov-2017)

Ref Expression
Assertion ustref UUnifOnXVUAXAVA

Proof

Step Hyp Ref Expression
1 eqid A=A
2 resieq AXAXAIXAA=A
3 1 2 mpbiri AXAXAIXA
4 3 anidms AXAIXA
5 4 3ad2ant3 UUnifOnXVUAXAIXA
6 ustdiag UUnifOnXVUIXV
7 6 ssbrd UUnifOnXVUAIXAAVA
8 7 3adant3 UUnifOnXVUAXAIXAAVA
9 5 8 mpd UUnifOnXVUAXAVA