Metamath Proof Explorer


Theorem uun132p1

Description: A deduction unionizing a non-unionized collection of virtual hypotheses. (Contributed by Alan Sare, 4-Feb-2017) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis uun132p1.1 ψχφθ
Assertion uun132p1 φψχθ

Proof

Step Hyp Ref Expression
1 uun132p1.1 ψχφθ
2 3anass φψχφψχ
3 ancom φψχψχφ
4 2 3 bitri φψχψχφ
5 4 1 sylbi φψχθ