Metamath Proof Explorer


Theorem uvcf1o

Description: In a nonzero ring, the mapping of the index set of a free module onto the unit vectors of the free module is a 1-1 onto function. (Contributed by AV, 10-Mar-2019)

Ref Expression
Hypothesis uvcf1o.u U=RunitVecI
Assertion uvcf1o RNzRingIWU:I1-1 ontoranU

Proof

Step Hyp Ref Expression
1 uvcf1o.u U=RunitVecI
2 eqid RfreeLModI=RfreeLModI
3 eqid BaseRfreeLModI=BaseRfreeLModI
4 1 2 3 uvcf1 RNzRingIWU:I1-1BaseRfreeLModI
5 f1f1orn U:I1-1BaseRfreeLModIU:I1-1 ontoranU
6 4 5 syl RNzRingIWU:I1-1 ontoranU