Metamath Proof Explorer


Theorem uvcvv0

Description: The unit vector is zero at its designated coordinate. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcvv.u U=RunitVecI
uvcvv.r φRV
uvcvv.i φIW
uvcvv.j φJI
uvcvv0.k φKI
uvcvv0.jk φJK
uvcvv0.z 0˙=0R
Assertion uvcvv0 φUJK=0˙

Proof

Step Hyp Ref Expression
1 uvcvv.u U=RunitVecI
2 uvcvv.r φRV
3 uvcvv.i φIW
4 uvcvv.j φJI
5 uvcvv0.k φKI
6 uvcvv0.jk φJK
7 uvcvv0.z 0˙=0R
8 eqid 1R=1R
9 1 8 7 uvcvval RVIWJIKIUJK=ifK=J1R0˙
10 2 3 4 5 9 syl31anc φUJK=ifK=J1R0˙
11 nesym JK¬K=J
12 6 11 sylib φ¬K=J
13 12 iffalsed φifK=J1R0˙=0˙
14 10 13 eqtrd φUJK=0˙