Metamath Proof Explorer


Theorem uvcvval

Description: Value of a unit vector coordinate in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U=RunitVecI
uvcfval.o 1˙=1R
uvcfval.z 0˙=0R
Assertion uvcvval RVIWJIKIUJK=ifK=J1˙0˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U=RunitVecI
2 uvcfval.o 1˙=1R
3 uvcfval.z 0˙=0R
4 1 2 3 uvcval RVIWJIUJ=kIifk=J1˙0˙
5 4 fveq1d RVIWJIUJK=kIifk=J1˙0˙K
6 5 adantr RVIWJIKIUJK=kIifk=J1˙0˙K
7 simpr RVIWJIKIKI
8 2 fvexi 1˙V
9 3 fvexi 0˙V
10 8 9 ifex ifK=J1˙0˙V
11 eqeq1 k=Kk=JK=J
12 11 ifbid k=Kifk=J1˙0˙=ifK=J1˙0˙
13 eqid kIifk=J1˙0˙=kIifk=J1˙0˙
14 12 13 fvmptg KIifK=J1˙0˙VkIifk=J1˙0˙K=ifK=J1˙0˙
15 7 10 14 sylancl RVIWJIKIkIifk=J1˙0˙K=ifK=J1˙0˙
16 6 15 eqtrd RVIWJIKIUJK=ifK=J1˙0˙