Metamath Proof Explorer


Theorem uvcval

Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U = R unitVec I
uvcfval.o 1 ˙ = 1 R
uvcfval.z 0 ˙ = 0 R
Assertion uvcval R V I W J I U J = k I if k = J 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U = R unitVec I
2 uvcfval.o 1 ˙ = 1 R
3 uvcfval.z 0 ˙ = 0 R
4 1 2 3 uvcfval R V I W U = j I k I if k = j 1 ˙ 0 ˙
5 4 fveq1d R V I W U J = j I k I if k = j 1 ˙ 0 ˙ J
6 5 3adant3 R V I W J I U J = j I k I if k = j 1 ˙ 0 ˙ J
7 eqid j I k I if k = j 1 ˙ 0 ˙ = j I k I if k = j 1 ˙ 0 ˙
8 eqeq2 j = J k = j k = J
9 8 ifbid j = J if k = j 1 ˙ 0 ˙ = if k = J 1 ˙ 0 ˙
10 9 mpteq2dv j = J k I if k = j 1 ˙ 0 ˙ = k I if k = J 1 ˙ 0 ˙
11 simp3 R V I W J I J I
12 mptexg I W k I if k = J 1 ˙ 0 ˙ V
13 12 3ad2ant2 R V I W J I k I if k = J 1 ˙ 0 ˙ V
14 7 10 11 13 fvmptd3 R V I W J I j I k I if k = j 1 ˙ 0 ˙ J = k I if k = J 1 ˙ 0 ˙
15 6 14 eqtrd R V I W J I U J = k I if k = J 1 ˙ 0 ˙