Metamath Proof Explorer


Theorem uvcval

Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U=RunitVecI
uvcfval.o 1˙=1R
uvcfval.z 0˙=0R
Assertion uvcval RVIWJIUJ=kIifk=J1˙0˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U=RunitVecI
2 uvcfval.o 1˙=1R
3 uvcfval.z 0˙=0R
4 1 2 3 uvcfval RVIWU=jIkIifk=j1˙0˙
5 4 fveq1d RVIWUJ=jIkIifk=j1˙0˙J
6 5 3adant3 RVIWJIUJ=jIkIifk=j1˙0˙J
7 eqid jIkIifk=j1˙0˙=jIkIifk=j1˙0˙
8 eqeq2 j=Jk=jk=J
9 8 ifbid j=Jifk=j1˙0˙=ifk=J1˙0˙
10 9 mpteq2dv j=JkIifk=j1˙0˙=kIifk=J1˙0˙
11 simp3 RVIWJIJI
12 mptexg IWkIifk=J1˙0˙V
13 12 3ad2ant2 RVIWJIkIifk=J1˙0˙V
14 7 10 11 13 fvmptd3 RVIWJIjIkIifk=j1˙0˙J=kIifk=J1˙0˙
15 6 14 eqtrd RVIWJIUJ=kIifk=J1˙0˙