Metamath Proof Explorer


Theorem uvcfval

Description: Value of the unit-vector generator for a free module. (Contributed by Stefan O'Rear, 1-Feb-2015)

Ref Expression
Hypotheses uvcfval.u U = R unitVec I
uvcfval.o 1 ˙ = 1 R
uvcfval.z 0 ˙ = 0 R
Assertion uvcfval R V I W U = j I k I if k = j 1 ˙ 0 ˙

Proof

Step Hyp Ref Expression
1 uvcfval.u U = R unitVec I
2 uvcfval.o 1 ˙ = 1 R
3 uvcfval.z 0 ˙ = 0 R
4 elex R V R V
5 elex I W I V
6 df-uvc unitVec = r V , i V j i k i if k = j 1 r 0 r
7 6 a1i R V I V unitVec = r V , i V j i k i if k = j 1 r 0 r
8 simpr r = R i = I i = I
9 fveq2 r = R 1 r = 1 R
10 9 2 eqtr4di r = R 1 r = 1 ˙
11 fveq2 r = R 0 r = 0 R
12 11 3 eqtr4di r = R 0 r = 0 ˙
13 10 12 ifeq12d r = R if k = j 1 r 0 r = if k = j 1 ˙ 0 ˙
14 13 adantr r = R i = I if k = j 1 r 0 r = if k = j 1 ˙ 0 ˙
15 8 14 mpteq12dv r = R i = I k i if k = j 1 r 0 r = k I if k = j 1 ˙ 0 ˙
16 8 15 mpteq12dv r = R i = I j i k i if k = j 1 r 0 r = j I k I if k = j 1 ˙ 0 ˙
17 16 adantl R V I V r = R i = I j i k i if k = j 1 r 0 r = j I k I if k = j 1 ˙ 0 ˙
18 simpl R V I V R V
19 simpr R V I V I V
20 mptexg I V j I k I if k = j 1 ˙ 0 ˙ V
21 20 adantl R V I V j I k I if k = j 1 ˙ 0 ˙ V
22 7 17 18 19 21 ovmpod R V I V R unitVec I = j I k I if k = j 1 ˙ 0 ˙
23 4 5 22 syl2an R V I W R unitVec I = j I k I if k = j 1 ˙ 0 ˙
24 1 23 syl5eq R V I W U = j I k I if k = j 1 ˙ 0 ˙