Step |
Hyp |
Ref |
Expression |
1 |
|
uvcfval.u |
⊢ 𝑈 = ( 𝑅 unitVec 𝐼 ) |
2 |
|
uvcfval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
3 |
|
uvcfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
4 |
|
elex |
⊢ ( 𝑅 ∈ 𝑉 → 𝑅 ∈ V ) |
5 |
|
elex |
⊢ ( 𝐼 ∈ 𝑊 → 𝐼 ∈ V ) |
6 |
|
df-uvc |
⊢ unitVec = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑗 ∈ 𝑖 ↦ ( 𝑘 ∈ 𝑖 ↦ if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
7 |
6
|
a1i |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → unitVec = ( 𝑟 ∈ V , 𝑖 ∈ V ↦ ( 𝑗 ∈ 𝑖 ↦ ( 𝑘 ∈ 𝑖 ↦ if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) ) |
8 |
|
simpr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = 𝐼 ) → 𝑖 = 𝐼 ) |
9 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
10 |
9 2
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 1r ‘ 𝑟 ) = 1 ) |
11 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
12 |
11 3
|
eqtr4di |
⊢ ( 𝑟 = 𝑅 → ( 0g ‘ 𝑟 ) = 0 ) |
13 |
10 12
|
ifeq12d |
⊢ ( 𝑟 = 𝑅 → if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑘 = 𝑗 , 1 , 0 ) ) |
14 |
13
|
adantr |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = 𝐼 ) → if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑘 = 𝑗 , 1 , 0 ) ) |
15 |
8 14
|
mpteq12dv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = 𝐼 ) → ( 𝑘 ∈ 𝑖 ↦ if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) = ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) |
16 |
8 15
|
mpteq12dv |
⊢ ( ( 𝑟 = 𝑅 ∧ 𝑖 = 𝐼 ) → ( 𝑗 ∈ 𝑖 ↦ ( 𝑘 ∈ 𝑖 ↦ if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |
17 |
16
|
adantl |
⊢ ( ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) ∧ ( 𝑟 = 𝑅 ∧ 𝑖 = 𝐼 ) ) → ( 𝑗 ∈ 𝑖 ↦ ( 𝑘 ∈ 𝑖 ↦ if ( 𝑘 = 𝑗 , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |
18 |
|
simpl |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → 𝑅 ∈ V ) |
19 |
|
simpr |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → 𝐼 ∈ V ) |
20 |
|
mptexg |
⊢ ( 𝐼 ∈ V → ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ∈ V ) |
21 |
20
|
adantl |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ∈ V ) |
22 |
7 17 18 19 21
|
ovmpod |
⊢ ( ( 𝑅 ∈ V ∧ 𝐼 ∈ V ) → ( 𝑅 unitVec 𝐼 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |
23 |
4 5 22
|
syl2an |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → ( 𝑅 unitVec 𝐼 ) = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |
24 |
1 23
|
syl5eq |
⊢ ( ( 𝑅 ∈ 𝑉 ∧ 𝐼 ∈ 𝑊 ) → 𝑈 = ( 𝑗 ∈ 𝐼 ↦ ( 𝑘 ∈ 𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ) |