Metamath Proof Explorer


Theorem uvcval

Description: Value of a single unit vector in a free module. (Contributed by Stefan O'Rear, 3-Feb-2015)

Ref Expression
Hypotheses uvcfval.u 𝑈 = ( 𝑅 unitVec 𝐼 )
uvcfval.o 1 = ( 1r𝑅 )
uvcfval.z 0 = ( 0g𝑅 )
Assertion uvcval ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → ( 𝑈𝐽 ) = ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) )

Proof

Step Hyp Ref Expression
1 uvcfval.u 𝑈 = ( 𝑅 unitVec 𝐼 )
2 uvcfval.o 1 = ( 1r𝑅 )
3 uvcfval.z 0 = ( 0g𝑅 )
4 1 2 3 uvcfval ( ( 𝑅𝑉𝐼𝑊 ) → 𝑈 = ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) )
5 4 fveq1d ( ( 𝑅𝑉𝐼𝑊 ) → ( 𝑈𝐽 ) = ( ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) )
6 5 3adant3 ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → ( 𝑈𝐽 ) = ( ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) )
7 eqid ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) = ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) )
8 eqeq2 ( 𝑗 = 𝐽 → ( 𝑘 = 𝑗𝑘 = 𝐽 ) )
9 8 ifbid ( 𝑗 = 𝐽 → if ( 𝑘 = 𝑗 , 1 , 0 ) = if ( 𝑘 = 𝐽 , 1 , 0 ) )
10 9 mpteq2dv ( 𝑗 = 𝐽 → ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) = ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) )
11 simp3 ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → 𝐽𝐼 )
12 mptexg ( 𝐼𝑊 → ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ∈ V )
13 12 3ad2ant2 ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) ∈ V )
14 7 10 11 13 fvmptd3 ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → ( ( 𝑗𝐼 ↦ ( 𝑘𝐼 ↦ if ( 𝑘 = 𝑗 , 1 , 0 ) ) ) ‘ 𝐽 ) = ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) )
15 6 14 eqtrd ( ( 𝑅𝑉𝐼𝑊𝐽𝐼 ) → ( 𝑈𝐽 ) = ( 𝑘𝐼 ↦ if ( 𝑘 = 𝐽 , 1 , 0 ) ) )