Metamath Proof Explorer


Theorem uzrdg0i

Description: Initial value of a recursive definition generator on upper integers. See comment in om2uzrdg . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
uzrdg.1 AV
uzrdg.2 R=recxV,yVx+1xFyCAω
uzrdg.3 S=ranR
Assertion uzrdg0i SC=A

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 uzrdg.1 AV
4 uzrdg.2 R=recxV,yVx+1xFyCAω
5 uzrdg.3 S=ranR
6 1 2 3 4 5 uzrdgfni SFnC
7 fnfun SFnCFunS
8 6 7 ax-mp FunS
9 4 fveq1i R=recxV,yVx+1xFyCAω
10 opex CAV
11 fr0g CAVrecxV,yVx+1xFyCAω=CA
12 10 11 ax-mp recxV,yVx+1xFyCAω=CA
13 9 12 eqtri R=CA
14 frfnom recxV,yVx+1xFyCAωFnω
15 4 fneq1i RFnωrecxV,yVx+1xFyCAωFnω
16 14 15 mpbir RFnω
17 peano1 ω
18 fnfvelrn RFnωωRranR
19 16 17 18 mp2an RranR
20 13 19 eqeltrri CAranR
21 20 5 eleqtrri CAS
22 funopfv FunSCASSC=A
23 8 21 22 mp2 SC=A