Metamath Proof Explorer


Theorem om2uzrdg

Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either NN or NN0 ) with characteristic function F ( x , y ) and initial value A . Normally F is a function on the partition, and A is a member of the partition. See also comment in om2uz0i . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G = rec x V x + 1 C ω
uzrdg.1 A V
uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
Assertion om2uzrdg B ω R B = G B 2 nd R B

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G = rec x V x + 1 C ω
3 uzrdg.1 A V
4 uzrdg.2 R = rec x V , y V x + 1 x F y C A ω
5 fveq2 z = R z = R
6 fveq2 z = G z = G
7 2fveq3 z = 2 nd R z = 2 nd R
8 6 7 opeq12d z = G z 2 nd R z = G 2 nd R
9 5 8 eqeq12d z = R z = G z 2 nd R z R = G 2 nd R
10 fveq2 z = v R z = R v
11 fveq2 z = v G z = G v
12 2fveq3 z = v 2 nd R z = 2 nd R v
13 11 12 opeq12d z = v G z 2 nd R z = G v 2 nd R v
14 10 13 eqeq12d z = v R z = G z 2 nd R z R v = G v 2 nd R v
15 fveq2 z = suc v R z = R suc v
16 fveq2 z = suc v G z = G suc v
17 2fveq3 z = suc v 2 nd R z = 2 nd R suc v
18 16 17 opeq12d z = suc v G z 2 nd R z = G suc v 2 nd R suc v
19 15 18 eqeq12d z = suc v R z = G z 2 nd R z R suc v = G suc v 2 nd R suc v
20 fveq2 z = B R z = R B
21 fveq2 z = B G z = G B
22 2fveq3 z = B 2 nd R z = 2 nd R B
23 21 22 opeq12d z = B G z 2 nd R z = G B 2 nd R B
24 20 23 eqeq12d z = B R z = G z 2 nd R z R B = G B 2 nd R B
25 4 fveq1i R = rec x V , y V x + 1 x F y C A ω
26 opex C A V
27 fr0g C A V rec x V , y V x + 1 x F y C A ω = C A
28 26 27 ax-mp rec x V , y V x + 1 x F y C A ω = C A
29 25 28 eqtri R = C A
30 1 2 om2uz0i G = C
31 29 fveq2i 2 nd R = 2 nd C A
32 1 elexi C V
33 32 3 op2nd 2 nd C A = A
34 31 33 eqtri 2 nd R = A
35 30 34 opeq12i G 2 nd R = C A
36 29 35 eqtr4i R = G 2 nd R
37 frsuc v ω rec x V , y V x + 1 x F y C A ω suc v = x V , y V x + 1 x F y rec x V , y V x + 1 x F y C A ω v
38 4 fveq1i R suc v = rec x V , y V x + 1 x F y C A ω suc v
39 4 fveq1i R v = rec x V , y V x + 1 x F y C A ω v
40 39 fveq2i x V , y V x + 1 x F y R v = x V , y V x + 1 x F y rec x V , y V x + 1 x F y C A ω v
41 37 38 40 3eqtr4g v ω R suc v = x V , y V x + 1 x F y R v
42 fveq2 R v = G v 2 nd R v x V , y V x + 1 x F y R v = x V , y V x + 1 x F y G v 2 nd R v
43 df-ov G v x V , y V x + 1 x F y 2 nd R v = x V , y V x + 1 x F y G v 2 nd R v
44 fvex G v V
45 fvex 2 nd R v V
46 oveq1 w = G v w + 1 = G v + 1
47 oveq1 w = G v w F z = G v F z
48 46 47 opeq12d w = G v w + 1 w F z = G v + 1 G v F z
49 oveq2 z = 2 nd R v G v F z = G v F 2 nd R v
50 49 opeq2d z = 2 nd R v G v + 1 G v F z = G v + 1 G v F 2 nd R v
51 oveq1 x = w x + 1 = w + 1
52 oveq1 x = w x F y = w F y
53 51 52 opeq12d x = w x + 1 x F y = w + 1 w F y
54 oveq2 y = z w F y = w F z
55 54 opeq2d y = z w + 1 w F y = w + 1 w F z
56 53 55 cbvmpov x V , y V x + 1 x F y = w V , z V w + 1 w F z
57 opex G v + 1 G v F 2 nd R v V
58 48 50 56 57 ovmpo G v V 2 nd R v V G v x V , y V x + 1 x F y 2 nd R v = G v + 1 G v F 2 nd R v
59 44 45 58 mp2an G v x V , y V x + 1 x F y 2 nd R v = G v + 1 G v F 2 nd R v
60 43 59 eqtr3i x V , y V x + 1 x F y G v 2 nd R v = G v + 1 G v F 2 nd R v
61 42 60 eqtrdi R v = G v 2 nd R v x V , y V x + 1 x F y R v = G v + 1 G v F 2 nd R v
62 41 61 sylan9eq v ω R v = G v 2 nd R v R suc v = G v + 1 G v F 2 nd R v
63 1 2 om2uzsuci v ω G suc v = G v + 1
64 63 adantr v ω R v = G v 2 nd R v G suc v = G v + 1
65 62 fveq2d v ω R v = G v 2 nd R v 2 nd R suc v = 2 nd G v + 1 G v F 2 nd R v
66 ovex G v + 1 V
67 ovex G v F 2 nd R v V
68 66 67 op2nd 2 nd G v + 1 G v F 2 nd R v = G v F 2 nd R v
69 65 68 eqtrdi v ω R v = G v 2 nd R v 2 nd R suc v = G v F 2 nd R v
70 64 69 opeq12d v ω R v = G v 2 nd R v G suc v 2 nd R suc v = G v + 1 G v F 2 nd R v
71 62 70 eqtr4d v ω R v = G v 2 nd R v R suc v = G suc v 2 nd R suc v
72 71 ex v ω R v = G v 2 nd R v R suc v = G suc v 2 nd R suc v
73 9 14 19 24 36 72 finds B ω R B = G B 2 nd R B