Metamath Proof Explorer


Theorem om2uzrdg

Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either NN or NN0 ) with characteristic function F ( x , y ) and initial value A . Normally F is a function on the partition, and A is a member of the partition. See also comment in om2uz0i . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)

Ref Expression
Hypotheses om2uz.1 C
om2uz.2 G=recxVx+1Cω
uzrdg.1 AV
uzrdg.2 R=recxV,yVx+1xFyCAω
Assertion om2uzrdg BωRB=GB2ndRB

Proof

Step Hyp Ref Expression
1 om2uz.1 C
2 om2uz.2 G=recxVx+1Cω
3 uzrdg.1 AV
4 uzrdg.2 R=recxV,yVx+1xFyCAω
5 fveq2 z=Rz=R
6 fveq2 z=Gz=G
7 2fveq3 z=2ndRz=2ndR
8 6 7 opeq12d z=Gz2ndRz=G2ndR
9 5 8 eqeq12d z=Rz=Gz2ndRzR=G2ndR
10 fveq2 z=vRz=Rv
11 fveq2 z=vGz=Gv
12 2fveq3 z=v2ndRz=2ndRv
13 11 12 opeq12d z=vGz2ndRz=Gv2ndRv
14 10 13 eqeq12d z=vRz=Gz2ndRzRv=Gv2ndRv
15 fveq2 z=sucvRz=Rsucv
16 fveq2 z=sucvGz=Gsucv
17 2fveq3 z=sucv2ndRz=2ndRsucv
18 16 17 opeq12d z=sucvGz2ndRz=Gsucv2ndRsucv
19 15 18 eqeq12d z=sucvRz=Gz2ndRzRsucv=Gsucv2ndRsucv
20 fveq2 z=BRz=RB
21 fveq2 z=BGz=GB
22 2fveq3 z=B2ndRz=2ndRB
23 21 22 opeq12d z=BGz2ndRz=GB2ndRB
24 20 23 eqeq12d z=BRz=Gz2ndRzRB=GB2ndRB
25 4 fveq1i R=recxV,yVx+1xFyCAω
26 opex CAV
27 fr0g CAVrecxV,yVx+1xFyCAω=CA
28 26 27 ax-mp recxV,yVx+1xFyCAω=CA
29 25 28 eqtri R=CA
30 1 2 om2uz0i G=C
31 29 fveq2i 2ndR=2ndCA
32 1 elexi CV
33 32 3 op2nd 2ndCA=A
34 31 33 eqtri 2ndR=A
35 30 34 opeq12i G2ndR=CA
36 29 35 eqtr4i R=G2ndR
37 frsuc vωrecxV,yVx+1xFyCAωsucv=xV,yVx+1xFyrecxV,yVx+1xFyCAωv
38 4 fveq1i Rsucv=recxV,yVx+1xFyCAωsucv
39 4 fveq1i Rv=recxV,yVx+1xFyCAωv
40 39 fveq2i xV,yVx+1xFyRv=xV,yVx+1xFyrecxV,yVx+1xFyCAωv
41 37 38 40 3eqtr4g vωRsucv=xV,yVx+1xFyRv
42 fveq2 Rv=Gv2ndRvxV,yVx+1xFyRv=xV,yVx+1xFyGv2ndRv
43 df-ov GvxV,yVx+1xFy2ndRv=xV,yVx+1xFyGv2ndRv
44 fvex GvV
45 fvex 2ndRvV
46 oveq1 w=Gvw+1=Gv+1
47 oveq1 w=GvwFz=GvFz
48 46 47 opeq12d w=Gvw+1wFz=Gv+1GvFz
49 oveq2 z=2ndRvGvFz=GvF2ndRv
50 49 opeq2d z=2ndRvGv+1GvFz=Gv+1GvF2ndRv
51 oveq1 x=wx+1=w+1
52 oveq1 x=wxFy=wFy
53 51 52 opeq12d x=wx+1xFy=w+1wFy
54 oveq2 y=zwFy=wFz
55 54 opeq2d y=zw+1wFy=w+1wFz
56 53 55 cbvmpov xV,yVx+1xFy=wV,zVw+1wFz
57 opex Gv+1GvF2ndRvV
58 48 50 56 57 ovmpo GvV2ndRvVGvxV,yVx+1xFy2ndRv=Gv+1GvF2ndRv
59 44 45 58 mp2an GvxV,yVx+1xFy2ndRv=Gv+1GvF2ndRv
60 43 59 eqtr3i xV,yVx+1xFyGv2ndRv=Gv+1GvF2ndRv
61 42 60 eqtrdi Rv=Gv2ndRvxV,yVx+1xFyRv=Gv+1GvF2ndRv
62 41 61 sylan9eq vωRv=Gv2ndRvRsucv=Gv+1GvF2ndRv
63 1 2 om2uzsuci vωGsucv=Gv+1
64 63 adantr vωRv=Gv2ndRvGsucv=Gv+1
65 62 fveq2d vωRv=Gv2ndRv2ndRsucv=2ndGv+1GvF2ndRv
66 ovex Gv+1V
67 ovex GvF2ndRvV
68 66 67 op2nd 2ndGv+1GvF2ndRv=GvF2ndRv
69 65 68 eqtrdi vωRv=Gv2ndRv2ndRsucv=GvF2ndRv
70 64 69 opeq12d vωRv=Gv2ndRvGsucv2ndRsucv=Gv+1GvF2ndRv
71 62 70 eqtr4d vωRv=Gv2ndRvRsucv=Gsucv2ndRsucv
72 71 ex vωRv=Gv2ndRvRsucv=Gsucv2ndRsucv
73 9 14 19 24 36 72 finds BωRB=GB2ndRB