Description: A helper lemma for the value of a recursive definition generator on upper integers (typically either NN or NN0 ) with characteristic function F ( x , y ) and initial value A . Normally F is a function on the partition, and A is a member of the partition. See also comment in om2uz0i . (Contributed by Mario Carneiro, 26-Jun-2013) (Revised by Mario Carneiro, 18-Nov-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | om2uz.1 | |
|
om2uz.2 | |
||
uzrdg.1 | |
||
uzrdg.2 | |
||
Assertion | om2uzrdg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | om2uz.1 | |
|
2 | om2uz.2 | |
|
3 | uzrdg.1 | |
|
4 | uzrdg.2 | |
|
5 | fveq2 | |
|
6 | fveq2 | |
|
7 | 2fveq3 | |
|
8 | 6 7 | opeq12d | |
9 | 5 8 | eqeq12d | |
10 | fveq2 | |
|
11 | fveq2 | |
|
12 | 2fveq3 | |
|
13 | 11 12 | opeq12d | |
14 | 10 13 | eqeq12d | |
15 | fveq2 | |
|
16 | fveq2 | |
|
17 | 2fveq3 | |
|
18 | 16 17 | opeq12d | |
19 | 15 18 | eqeq12d | |
20 | fveq2 | |
|
21 | fveq2 | |
|
22 | 2fveq3 | |
|
23 | 21 22 | opeq12d | |
24 | 20 23 | eqeq12d | |
25 | 4 | fveq1i | |
26 | opex | |
|
27 | fr0g | |
|
28 | 26 27 | ax-mp | |
29 | 25 28 | eqtri | |
30 | 1 2 | om2uz0i | |
31 | 29 | fveq2i | |
32 | 1 | elexi | |
33 | 32 3 | op2nd | |
34 | 31 33 | eqtri | |
35 | 30 34 | opeq12i | |
36 | 29 35 | eqtr4i | |
37 | frsuc | |
|
38 | 4 | fveq1i | |
39 | 4 | fveq1i | |
40 | 39 | fveq2i | |
41 | 37 38 40 | 3eqtr4g | |
42 | fveq2 | |
|
43 | df-ov | |
|
44 | fvex | |
|
45 | fvex | |
|
46 | oveq1 | |
|
47 | oveq1 | |
|
48 | 46 47 | opeq12d | |
49 | oveq2 | |
|
50 | 49 | opeq2d | |
51 | oveq1 | |
|
52 | oveq1 | |
|
53 | 51 52 | opeq12d | |
54 | oveq2 | |
|
55 | 54 | opeq2d | |
56 | 53 55 | cbvmpov | |
57 | opex | |
|
58 | 48 50 56 57 | ovmpo | |
59 | 44 45 58 | mp2an | |
60 | 43 59 | eqtr3i | |
61 | 42 60 | eqtrdi | |
62 | 41 61 | sylan9eq | |
63 | 1 2 | om2uzsuci | |
64 | 63 | adantr | |
65 | 62 | fveq2d | |
66 | ovex | |
|
67 | ovex | |
|
68 | 66 67 | op2nd | |
69 | 65 68 | eqtrdi | |
70 | 64 69 | opeq12d | |
71 | 62 70 | eqtr4d | |
72 | 71 | ex | |
73 | 9 14 19 24 36 72 | finds | |