Step |
Hyp |
Ref |
Expression |
1 |
|
om2uz.1 |
⊢ 𝐶 ∈ ℤ |
2 |
|
om2uz.2 |
⊢ 𝐺 = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 𝐶 ) ↾ ω ) |
3 |
|
uzrdg.1 |
⊢ 𝐴 ∈ V |
4 |
|
uzrdg.2 |
⊢ 𝑅 = ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) |
5 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ ∅ ) ) |
6 |
|
fveq2 |
⊢ ( 𝑧 = ∅ → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ ∅ ) ) |
7 |
|
2fveq3 |
⊢ ( 𝑧 = ∅ → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) ) |
8 |
6 7
|
opeq12d |
⊢ ( 𝑧 = ∅ → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) |
9 |
5 8
|
eqeq12d |
⊢ ( 𝑧 = ∅ → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 ) ) |
10 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝑣 ) ) |
11 |
|
fveq2 |
⊢ ( 𝑧 = 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝑣 ) ) |
12 |
|
2fveq3 |
⊢ ( 𝑧 = 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
13 |
11 12
|
opeq12d |
⊢ ( 𝑧 = 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) |
14 |
10 13
|
eqeq12d |
⊢ ( 𝑧 = 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) |
15 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑣 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ suc 𝑣 ) ) |
16 |
|
fveq2 |
⊢ ( 𝑧 = suc 𝑣 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ suc 𝑣 ) ) |
17 |
|
2fveq3 |
⊢ ( 𝑧 = suc 𝑣 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) ) |
18 |
16 17
|
opeq12d |
⊢ ( 𝑧 = suc 𝑣 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
19 |
15 18
|
eqeq12d |
⊢ ( 𝑧 = suc 𝑣 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) |
20 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝑅 ‘ 𝑧 ) = ( 𝑅 ‘ 𝐵 ) ) |
21 |
|
fveq2 |
⊢ ( 𝑧 = 𝐵 → ( 𝐺 ‘ 𝑧 ) = ( 𝐺 ‘ 𝐵 ) ) |
22 |
|
2fveq3 |
⊢ ( 𝑧 = 𝐵 → ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) = ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) ) |
23 |
21 22
|
opeq12d |
⊢ ( 𝑧 = 𝐵 → 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |
24 |
20 23
|
eqeq12d |
⊢ ( 𝑧 = 𝐵 → ( ( 𝑅 ‘ 𝑧 ) = 〈 ( 𝐺 ‘ 𝑧 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑧 ) ) 〉 ↔ ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) ) |
25 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ ∅ ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) |
26 |
|
opex |
⊢ 〈 𝐶 , 𝐴 〉 ∈ V |
27 |
|
fr0g |
⊢ ( 〈 𝐶 , 𝐴 〉 ∈ V → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 ) |
28 |
26 27
|
ax-mp |
⊢ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
29 |
25 28
|
eqtri |
⊢ ( 𝑅 ‘ ∅ ) = 〈 𝐶 , 𝐴 〉 |
30 |
1 2
|
om2uz0i |
⊢ ( 𝐺 ‘ ∅ ) = 𝐶 |
31 |
29
|
fveq2i |
⊢ ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) |
32 |
1
|
elexi |
⊢ 𝐶 ∈ V |
33 |
32 3
|
op2nd |
⊢ ( 2nd ‘ 〈 𝐶 , 𝐴 〉 ) = 𝐴 |
34 |
31 33
|
eqtri |
⊢ ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) = 𝐴 |
35 |
30 34
|
opeq12i |
⊢ 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 = 〈 𝐶 , 𝐴 〉 |
36 |
29 35
|
eqtr4i |
⊢ ( 𝑅 ‘ ∅ ) = 〈 ( 𝐺 ‘ ∅ ) , ( 2nd ‘ ( 𝑅 ‘ ∅ ) ) 〉 |
37 |
|
frsuc |
⊢ ( 𝑣 ∈ ω → ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) ) |
38 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ suc 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ suc 𝑣 ) |
39 |
4
|
fveq1i |
⊢ ( 𝑅 ‘ 𝑣 ) = ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) |
40 |
39
|
fveq2i |
⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( ( rec ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) , 〈 𝐶 , 𝐴 〉 ) ↾ ω ) ‘ 𝑣 ) ) |
41 |
37 38 40
|
3eqtr4g |
⊢ ( 𝑣 ∈ ω → ( 𝑅 ‘ suc 𝑣 ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
42 |
|
fveq2 |
⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) ) |
43 |
|
df-ov |
⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) |
44 |
|
fvex |
⊢ ( 𝐺 ‘ 𝑣 ) ∈ V |
45 |
|
fvex |
⊢ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V |
46 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 + 1 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) |
47 |
|
oveq1 |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → ( 𝑤 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) ) |
48 |
46 47
|
opeq12d |
⊢ ( 𝑤 = ( 𝐺 ‘ 𝑣 ) → 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 ) |
49 |
|
oveq2 |
⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) |
50 |
49
|
opeq2d |
⊢ ( 𝑧 = ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) → 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 𝑧 ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
51 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 + 1 ) = ( 𝑤 + 1 ) ) |
52 |
|
oveq1 |
⊢ ( 𝑥 = 𝑤 → ( 𝑥 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑦 ) ) |
53 |
51 52
|
opeq12d |
⊢ ( 𝑥 = 𝑤 → 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑦 ) 〉 ) |
54 |
|
oveq2 |
⊢ ( 𝑦 = 𝑧 → ( 𝑤 𝐹 𝑦 ) = ( 𝑤 𝐹 𝑧 ) ) |
55 |
54
|
opeq2d |
⊢ ( 𝑦 = 𝑧 → 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑦 ) 〉 = 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
56 |
53 55
|
cbvmpov |
⊢ ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) = ( 𝑤 ∈ V , 𝑧 ∈ V ↦ 〈 ( 𝑤 + 1 ) , ( 𝑤 𝐹 𝑧 ) 〉 ) |
57 |
|
opex |
⊢ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ∈ V |
58 |
48 50 56 57
|
ovmpo |
⊢ ( ( ( 𝐺 ‘ 𝑣 ) ∈ V ∧ ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ∈ V ) → ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
59 |
44 45 58
|
mp2an |
⊢ ( ( 𝐺 ‘ 𝑣 ) ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
60 |
43 59
|
eqtr3i |
⊢ ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 |
61 |
42 60
|
eqtrdi |
⊢ ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( ( 𝑥 ∈ V , 𝑦 ∈ V ↦ 〈 ( 𝑥 + 1 ) , ( 𝑥 𝐹 𝑦 ) 〉 ) ‘ ( 𝑅 ‘ 𝑣 ) ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
62 |
41 61
|
sylan9eq |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
63 |
1 2
|
om2uzsuci |
⊢ ( 𝑣 ∈ ω → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) |
64 |
63
|
adantr |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝐺 ‘ suc 𝑣 ) = ( ( 𝐺 ‘ 𝑣 ) + 1 ) ) |
65 |
62
|
fveq2d |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) ) |
66 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑣 ) + 1 ) ∈ V |
67 |
|
ovex |
⊢ ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ∈ V |
68 |
66 67
|
op2nd |
⊢ ( 2nd ‘ 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) |
69 |
65 68
|
eqtrdi |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) = ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) ) |
70 |
64 69
|
opeq12d |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 = 〈 ( ( 𝐺 ‘ 𝑣 ) + 1 ) , ( ( 𝐺 ‘ 𝑣 ) 𝐹 ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) ) 〉 ) |
71 |
62 70
|
eqtr4d |
⊢ ( ( 𝑣 ∈ ω ∧ ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 ) → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) |
72 |
71
|
ex |
⊢ ( 𝑣 ∈ ω → ( ( 𝑅 ‘ 𝑣 ) = 〈 ( 𝐺 ‘ 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ 𝑣 ) ) 〉 → ( 𝑅 ‘ suc 𝑣 ) = 〈 ( 𝐺 ‘ suc 𝑣 ) , ( 2nd ‘ ( 𝑅 ‘ suc 𝑣 ) ) 〉 ) ) |
73 |
9 14 19 24 36 72
|
finds |
⊢ ( 𝐵 ∈ ω → ( 𝑅 ‘ 𝐵 ) = 〈 ( 𝐺 ‘ 𝐵 ) , ( 2nd ‘ ( 𝑅 ‘ 𝐵 ) ) 〉 ) |