Metamath Proof Explorer


Theorem uzubico

Description: The upper integers are unbounded above. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses uzubico.1 φM
uzubico.2 Z=M
uzubico.3 φX
Assertion uzubico φkX+∞kZ

Proof

Step Hyp Ref Expression
1 uzubico.1 φM
2 uzubico.2 Z=M
3 uzubico.3 φX
4 1 2 3 uzubioo φkX+∞kZ
5 ioossico X+∞X+∞
6 ssrexv X+∞X+∞kX+∞kZkX+∞kZ
7 5 6 ax-mp kX+∞kZkX+∞kZ
8 4 7 syl φkX+∞kZ